Graded sheaves and Applications

Penghui Li joint w/ Quoc P. Ho

YMSC, Tsinghua University

BeiShang Summer School, 2025

1/23

- Motivation: categorification of Hecke algebra
- In Graded sheaves on Artin stacks
- Applications (GNR conjecture, Serre duality)
- Expectations and Conjectures

• Symmetric group S_n is generated by $\sigma_1, ... \sigma_{n-1}$, subject to the relations:

3
$$\sigma_i^2 = 1$$

• Symmetric group S_n is generated by $\sigma_1, ... \sigma_{n-1}$, subject to the relations:

• $\mathbb{Z}[S_n]$ has a 1-parameter deformation: H_n is a $\mathbb{Z}[q, q^{-1}]$ -algebra generated by $T_1, ..., T_{n-1}$ subject to the relation:

$$\begin{array}{l} \bullet \quad T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1} \\ \bullet \quad T_i T_j = T_j T_i, \quad \forall |i-j| > 1 \\ \bullet \quad T_i^2 = (q-1) T_i + q \end{array}$$

• Symmetric group S_n is generated by $\sigma_1, ... \sigma_{n-1}$, subject to the relations:

• $\mathbb{Z}[S_n]$ has a 1-parameter deformation: H_n is a $\mathbb{Z}[q, q^{-1}]$ -algebra generated by $T_1, ..., T_{n-1}$ subject to the relation:

$$\begin{array}{l} \bullet \quad T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1} \\ \bullet \quad T_i T_j = T_j T_i, \quad \forall |i-j| > 1 \\ \bullet \quad T_i^2 = (q-1) T_i + q \end{array}$$

• Hecke algebra H_W is defined similarly for general Weyl group W.

Categorification of Hecke algebras

$$egin{aligned} &\mathcal{H}_W\otimes_{\mathbb{Z}[\sqrt{q}^{\pm}]}\mathbb{C}\simeq (\mathbb{C}[B(\mathbb{F}_q)ackslash G(\mathbb{F}_q)/B(\mathbb{F}_q)],*_{\mathit{conv}})\ &\mathcal{T}_{s_i}\longleftrightarrow \mathbb{1}_{Backslash Bs_iB/B} \end{aligned}$$

$$egin{aligned} &\mathcal{H}_W\otimes_{\mathbb{Z}[\sqrt{q}^{\pm}]}\mathbb{C}\simeq (\mathbb{C}[B(\mathbb{F}_q)ackslash G(\mathbb{F}_q)/B(\mathbb{F}_q)],*_{\mathit{conv}})\ &\mathcal{T}_{s_i}\longleftrightarrow \mathbb{1}_{Backslash Bs_iB/B} \end{aligned}$$

- Categorification: Replace functions by (constructible) sheaves: $Shv(B \setminus G/B)$.
- But what kind of sheaves?

$$egin{aligned} &\mathcal{H}_W\otimes_{\mathbb{Z}[\sqrt{q}^{\pm}]}\mathbb{C}\simeq (\mathbb{C}[B(\mathbb{F}_q)ackslash G(\mathbb{F}_q)/B(\mathbb{F}_q)],*_{\mathit{conv}})\ &\mathcal{T}_{s_i}\longleftrightarrow \mathbb{1}_{Backslash Bs_iB/B} \end{aligned}$$

- Categorification: Replace functions by (constructible) sheaves: $Shv(B \setminus G/B)$.
- But what kind of sheaves?
 - For G over algebraically closed k. We have K(D^b_c(B\G/B)) = C[W]. Too small: no q appears.
 - For G_0 over $pt_0 = \text{Spec}(\mathbb{F}_q)$, then $\mathcal{K}(D^b_c(B_0 \setminus G_0/B_0))$ is too big.

$$egin{aligned} \mathcal{H}_W \otimes_{\mathbb{Z}[\sqrt{q}^{\pm}]} \mathbb{C} &\simeq (\mathbb{C}[B(\mathbb{F}_q)ackslash G(\mathbb{F}_q)/B(\mathbb{F}_q)], *_{\mathit{conv}}) \ && \mathcal{T}_{s_i} \longleftrightarrow \mathbb{1}_{Backslash Bs_iB/B} \end{aligned}$$

$$egin{aligned} &\mathcal{H}_W\otimes_{\mathbb{Z}[\sqrt{q}^{\pm}]}\mathbb{C}\simeq (\mathbb{C}[B(\mathbb{F}_q)ackslash G(\mathbb{F}_q)/B(\mathbb{F}_q)],*_{\mathit{conv}})\ &\mathcal{T}_{s_i}\longleftrightarrow \mathbbm{1}_{Backslash Bs_iB/B} \end{aligned}$$

• Categorification: Replace functions by (constructible) sheaves.

$$egin{aligned} &\mathcal{H}_W\otimes_{\mathbb{Z}[\sqrt{q}^{\pm}]}\mathbb{C}\simeq (\mathbb{C}[B(\mathbb{F}_q)ackslash G(\mathbb{F}_q)/B(\mathbb{F}_q)],*_{\mathit{conv}})\ &\mathcal{T}_{s_i}\longleftrightarrow \mathbbm{1}_{Backslash Bs_iB/B} \end{aligned}$$

Categorification: Replace functions by (constructible) sheaves.But what kind of sheaves?

$$egin{aligned} &\mathcal{H}_W\otimes_{\mathbb{Z}[\sqrt{q}^{\pm}]}\mathbb{C}\simeq (\mathbb{C}[B(\mathbb{F}_q)ackslash G(\mathbb{F}_q)/B(\mathbb{F}_q)],*_{\mathit{conv}})\ &\mathcal{T}_{s_i}\longleftrightarrow \mathbbm{1}_{Backslash Bs_iB/B} \end{aligned}$$

- Categorification: Replace functions by (constructible) sheaves.
- But what kind of sheaves?
 - For G over algebraically closed k. We have K(D^b_c(B\G/B)) = C[W]. Too small: no q appears.

5 / 23

$$egin{aligned} &\mathcal{H}_W\otimes_{\mathbb{Z}[\sqrt{q}^{\pm}]}\mathbb{C}\simeq (\mathbb{C}[B(\mathbb{F}_q)ackslash G(\mathbb{F}_q)/B(\mathbb{F}_q)],*_{\mathit{conv}})\ &\mathcal{T}_{s_i}\longleftrightarrow \mathbbm{1}_{Backslash Bs_iB/B} \end{aligned}$$

- Categorification: Replace functions by (constructible) sheaves.
- But what kind of sheaves?
 - For G over algebraically closed k. We have K(D^b_c(B\G/B)) = C[W]. Too small: no q appears.
 - 2 For G_0 over $pt_0 = \text{Spec}(\mathbb{F}_q)$, then $\mathcal{K}(D^b(B_0 \setminus G_0/B_0))$ is too big.

For $G = \{1\}$, we have $H_{\{1\}} = \mathbb{Z}[\sqrt{q}, \sqrt{q}^{-1}] = \mathbb{Z}[\mathbb{Z}] = \text{group ring of } \mathbb{Z}$.

イロト イポト イヨト イヨト 二日

For $G = \{1\}$, we have $H_{\{1\}} = \mathbb{Z}[\sqrt{q}, \sqrt{q}^{-1}] = \mathbb{Z}[\mathbb{Z}] = \text{group ring of } \mathbb{Z}$. Canonical categorification of $H_{\{1\}}$ is given by

 $Vect^{\mathbb{Z}}$:= the derived category of \mathbb{Z} -graded vector spaces.

For $G = \{1\}$, we have $H_{\{1\}} = \mathbb{Z}[\sqrt{q}, \sqrt{q}^{-1}] = \mathbb{Z}[\mathbb{Z}] = \text{group ring of } \mathbb{Z}$. Canonical categorification of $H_{\{1\}}$ is given by $\text{Vect}^{\mathbb{Z}}$:= the derived category of \mathbb{Z} -graded vector spaces.

$$\mathcal{K}(\mathsf{Vect}^{\mathbb{Z}}) \stackrel{\simeq}{\to} \mathbb{Z}[\sqrt{q}, \sqrt{q}^{-1} \ \oplus_i V_i \mapsto \sum_i \chi(V_i) q^{i/2}$$

For $G = \{1\}$, we have $H_{\{1\}} = \mathbb{Z}[\sqrt{q}, \sqrt{q}^{-1}] = \mathbb{Z}[\mathbb{Z}] =$ group ring of \mathbb{Z} . Canonical categorification of $H_{\{1\}}$ is given by Vect^{\mathbb{Z}}:= the derived category of \mathbb{Z} -graded vector spaces.

$$\mathcal{K}(\mathsf{Vect}^{\mathbb{Z}}) \xrightarrow{\simeq} \mathbb{Z}[\sqrt{q}, \sqrt{q}^{-1}]$$

 $\oplus_i V_i \mapsto \sum_i \chi(V_i) q^{i/2}$

The two candidates in previous page: (fix $\overline{\mathbb{Q}}_{\ell} \simeq \mathbb{C}$) $D^{b}(pt) = \text{Vect, and } D^{b}(pt_{0}) = \{(V, \varphi) : V \in \text{Vect}, \varphi : V \xrightarrow{\simeq} V, ...\}$

For $G = \{1\}$, we have $H_{\{1\}} = \mathbb{Z}[\sqrt{q}, \sqrt{q}^{-1}] = \mathbb{Z}[\mathbb{Z}] =$ group ring of \mathbb{Z} . Canonical categorification of $H_{\{1\}}$ is given by Vect^{\mathbb{Z}}:= the derived category of \mathbb{Z} -graded vector spaces.

$$\mathcal{K}(\mathsf{Vect}^{\mathbb{Z}}) \xrightarrow{\simeq} \mathbb{Z}[\sqrt{q}, \sqrt{q}^{-1}]$$

 $\oplus_i V_i \mapsto \sum_i \chi(V_i) q^{i/2}$

The two candidates in previous page: (fix $\overline{\mathbb{Q}}_{\ell} \simeq \mathbb{C}$) $D^{b}(pt) = \text{Vect, and } D^{b}(pt_{0}) = \{(V, \varphi) : V \in \text{Vect}, \varphi : V \xrightarrow{\simeq} V, ...\}$ $\mathcal{K}(D^{b}(pt)) = \mathbb{Z}$, too small.

For $G = \{1\}$, we have $H_{\{1\}} = \mathbb{Z}[\sqrt{q}, \sqrt{q}^{-1}] = \mathbb{Z}[\mathbb{Z}] =$ group ring of \mathbb{Z} . Canonical categorification of $H_{\{1\}}$ is given by Vect^{\mathbb{Z}}:= the derived category of \mathbb{Z} -graded vector spaces.

$$\mathcal{K}(\mathsf{Vect}^{\mathbb{Z}}) \xrightarrow{\simeq} \mathbb{Z}[\sqrt{q}, \sqrt{q}^{-1}]$$
 $\oplus_i V_i \mapsto \sum_i \chi(V_i) q^{i/2}$

The two candidates in previous page: (fix $\overline{\mathbb{Q}}_{\ell} \simeq \mathbb{C}$) $D^{b}(pt) = \text{Vect, and } D^{b}(pt_{0}) = \{(V, \varphi) : V \in \text{Vect}, \varphi : V \xrightarrow{\simeq} V, ...\}$ **1** $\mathcal{K}(D^{b}(pt)) = \mathbb{Z}$, too small. **2** $\mathcal{K}(D^{b}(pt_{0})) = \mathbb{Z}[\mathbb{C}^{\times}]$, too big (actually $\mathbb{Z}[\{\ell \text{-adic units in } \mathbb{C}^{\times}\}]$). A solution: take Tate objects. $D^{b}_{Tate}(pt_{0}) := \langle (\mathbb{C}, \varphi = q^{k/2}), k \in \mathbb{Z} \rangle \subseteq D^{b}(pt_{0}).$

For $G = \{1\}$, we have $H_{\{1\}} = \mathbb{Z}[\sqrt{q}, \sqrt{q}^{-1}] = \mathbb{Z}[\mathbb{Z}] =$ group ring of \mathbb{Z} . Canonical categorification of $H_{\{1\}}$ is given by Vect^{\mathbb{Z}}:= the derived category of \mathbb{Z} -graded vector spaces.

$$\mathcal{K}(\mathsf{Vect}^{\mathbb{Z}}) \xrightarrow{\simeq} \mathbb{Z}[\sqrt{q}, \sqrt{q}^{-1}]$$
 $\oplus_i V_i \mapsto \sum_i \chi(V_i) q^{i/2}$

The two candidates in previous page: (fix $\overline{\mathbb{Q}}_{\ell} \simeq \mathbb{C}$) $D^{b}(pt) = \text{Vect, and } D^{b}(pt_{0}) = \{(V, \varphi) : V \in \text{Vect}, \varphi : V \xrightarrow{\simeq} V, ...\}$ **1** $\mathcal{K}(D^{b}(pt)) = \mathbb{Z}$, too small. **2** $\mathcal{K}(D^{b}(pt_{0})) = \mathbb{Z}[\mathbb{C}^{\times}]$, too big (actually $\mathbb{Z}[\{\ell\text{-adic units in } \mathbb{C}^{\times}\}]$). A solution: take Tate objects. $D^{b}_{Tate}(pt_{0}) := \langle (\mathbb{C}, \varphi = q^{k/2}), k \in \mathbb{Z} \rangle \subseteq D^{b}(pt_{0}).$ $\mathcal{K}(D^{b}_{Tate}(pt_{0})) = \mathbb{Z}[\sqrt{q}^{\mathbb{Z}}] \subseteq \mathbb{Z}[\mathbb{C}^{\times}]$

Theorem (Soergel, Beilinson-Ginzburg-Soergel)

Let $\mathcal{H}_G := D^b_{Tate}(B_0 \setminus G_0 / B_0) \subseteq D^b(B_0 \setminus G_0 / B_0)$ be the subcategory "generated" by $IC_w \langle k \rangle, w \in W$. Then

 $\mathcal{K}(\mathcal{H}_G) \simeq H_W$

 $[IC_w\langle k\rangle]\mapsto q^kKL_w$

Functorial categorification?

However, the assignment $X_0 \mapsto D^b_{Tate}(X_0)$ is not functorial in general:

 IC-sheaves are preserved in general only under proper pushforward/smooth pullback.

- IC-sheaves are preserved in general only under proper pushforward/smooth pullback.
- Pushforward of Tate objects are not necessarily Tate (consider $E_0 \rightarrow pt_0$).

- *IC*-sheaves are preserved in general only under proper pushforward/smooth pullback.
- Pushforward of Tate objects are not necessarily Tate (consider $E_0 \rightarrow pt_0$).
- Frobenius action on H*(X) not known to be semisimple (standard conjectures).

- *IC*-sheaves are preserved in general only under proper pushforward/smooth pullback.
- Pushforward of Tate objects are not necessarily Tate (consider $E_0 \rightarrow pt_0$).
- Frobenius action on H*(X) not known to be semisimple (standard conjectures).

Main Goal

Define a sheaf theory $S: Stk \to Cat_{\infty}^{st}$, with six functors formalism, such that $S(B \setminus G/B) = \mathcal{H}_G$.

Previous constructions has an intermediate step:

$$D^b_{Tate}(X_0) \subseteq D^b_{mix}(X_0) \subseteq D^b(X_0)$$

э

∃ ► < ∃ ►

Previous constructions has an intermediate step:

$$D^b_{Tate}(X_0) \subseteq D^b_{mix}(X_0) \subseteq D^b(X_0)$$

where $D^b_{mix}(X_0)$ are those sheaves with Frobenius eigenvalues on stalks lie in

$$\Omega := \{\lambda \in \mathbb{C}^{ imes} : |\lambda| \in \sqrt{q}^{\mathbb{Z}}\}$$

Previous constructions has an intermediate step:

$$D^b_{Tate}(X_0) \subseteq D^b_{mix}(X_0) \subseteq D^b(X_0)$$

where $D_{mix}^{b}(X_0)$ are those sheaves with Frobenius eigenvalues on stalks lie in

$$\Omega := \{\lambda \in \mathbb{C}^{\times} : |\lambda| \in \sqrt{q}^{\mathbb{Z}}\}$$

For $X_0 = pt_0$, the above inclusion essentially comes from

$$\sqrt{q}^{\mathbb{Z}} \hookrightarrow \Omega \hookrightarrow \mathbb{C}^{ imes}$$

For a vector space V, we have subspace $U \subseteq V$ or quotient space V/U. They should be treated on equal footing, even though V/U is harder to define. Same idea should apply to categories.

For a vector space V, we have subspace $U \subseteq V$ or quotient space V/U. They should be treated on equal footing, even though V/U is harder to define. Same idea should apply to categories. Instead of

$$\sqrt{q}^{\mathbb{Z}} \hookrightarrow \Omega \hookrightarrow \mathbb{C}^{ imes}$$

For a vector space V, we have subspace $U \subseteq V$ or quotient space V/U. They should be treated on equal footing, even though V/U is harder to define. Same idea should apply to categories. Instead of

$$\sqrt{q}^{\mathbb{Z}} \hookrightarrow \Omega \hookrightarrow \mathbb{C}^{ imes}$$

We consider

$$\mathbb{Z} \twoheadleftarrow \Omega \hookrightarrow \mathbb{C}^{\times}$$

For a vector space V, we have subspace $U \subseteq V$ or quotient space V/U. They should be treated on equal footing, even though V/U is harder to define. Same idea should apply to categories. Instead of

$$\sqrt{q}^{\mathbb{Z}} \hookrightarrow \Omega \hookrightarrow \mathbb{C}^{ imes}$$

We consider

$$\mathbb{Z} \twoheadleftarrow \Omega \hookrightarrow \mathbb{C}^{\times}$$

The map $\sqrt{q}^{\mathbb{Z}} \hookrightarrow \Omega$ is a section of the projection $\Omega \twoheadrightarrow \mathbb{Z}$, depending on choice of a number in \mathbb{C}^{\times}

For a vector space V, we have subspace $U \subseteq V$ or quotient space V/U. They should be treated on equal footing, even though V/U is harder to define. Same idea should apply to categories. Instead of

$$\sqrt{q}^{\mathbb{Z}} \hookrightarrow \Omega \hookrightarrow \mathbb{C}^{ imes}$$

We consider

$$\mathbb{Z} \twoheadleftarrow \Omega \hookrightarrow \mathbb{C}^{\times}$$

The map $\sqrt{q}^{\mathbb{Z}} \hookrightarrow \Omega$ is a section of the projection $\Omega \twoheadrightarrow \mathbb{Z}$, depending on choice of a number in \mathbb{C}^{\times} Consider similar diagram on categories:

$$D^b_{gr}(pt) := \operatorname{Vect}^{\mathbb{Z}} \twoheadleftarrow D^b_{mix}(pt_0) \hookrightarrow D^b(pt_0)$$

The arrow \leftarrow sending $(V, \varphi) \mapsto \bigoplus_i V_i$, where $V_i \subseteq V$ is the subspace of Frobenius weight *i*.
Let $X/\overline{\mathbb{F}}_q$ be a finite type Artin stack, X_0 be a rational form of X.

$$D^b_{gr}(X) := D^b_{mix}(X_0) \otimes_{D^b_{mix}(pt_0)} D^b_{gr}(pt)$$

Let $X/\overline{\mathbb{F}}_q$ be a finite type Artin stack, X_0 be a rational form of X.

$$D^b_{gr}(X) := D^b_{mix}(X_0) \otimes_{D^b_{mix}(pt_0)} D^b_{gr}(pt)$$

(tensor product taken in small stable ∞ -categories.)

• $D_{gr}^{b}(X)$ is canonically independent of the choice of X_{0} .

Let $X/\overline{\mathbb{F}}_q$ be a finite type Artin stack, X_0 be a rational form of X.

$$D^b_{gr}(X) := D^b_{mix}(X_0) \otimes_{D^b_{mix}(pt_0)} D^b_{gr}(pt)$$

- $D_{gr}^{b}(X)$ is canonically independent of the choice of X_{0} .
- $D_{gr}^{b}(X)$ has six functor formalism induced from $D_{mix}^{b}(X_{0})$.

Let $X/\overline{\mathbb{F}}_q$ be a finite type Artin stack, X_0 be a rational form of X.

$$D^b_{gr}(X) := D^b_{mix}(X_0) \otimes_{D^b_{mix}(pt_0)} D^b_{gr}(pt)$$

- $D_{gr}^{b}(X)$ is canonically independent of the choice of X_{0} .
- $D_{gr}^{b}(X)$ has six functor formalism induced from $D_{mix}^{b}(X_{0})$.
- We have natural functors D^b_{mix}(X₀) → D^b_{gr}(X) → D^b(X) composition is simply F → F ⊗ F_q.

Let $X/\overline{\mathbb{F}}_q$ be a finite type Artin stack, X_0 be a rational form of X.

$$D^b_{gr}(X) := D^b_{mix}(X_0) \otimes_{D^b_{mix}(pt_0)} D^b_{gr}(pt)$$

- $D_{gr}^{b}(X)$ is canonically independent of the choice of X_{0} .
- $D_{gr}^{b}(X)$ has six functor formalism induced from $D_{mix}^{b}(X_{0})$.
- We have natural functors D^b_{mix}(X₀) → D^b_{gr}(X) → D^b(X) composition is simply F → F ⊗ F_q.

$D^b_{mix}(X_0)$ is equipped with

- full subcategories $(D_{mix}^{w \le 0}(X_0), D_{mix}^{w \ge 0}(X_0))$ by Frobenius weights
- perverse t-structure $(D_{mix}^{t \leq 0}(X_0), D_{mix}^{t \geq 0}(X_0))$

$D^b_{mix}(X_0)$ is equipped with

- full subcategories $(D_{mix}^{w \le 0}(X_0), D_{mix}^{w \ge 0}(X_0))$ by Frobenius weights
- perverse t-structure $(D_{mix}^{t\leq 0}(X_0), D_{mix}^{t\geq 0}(X_0))$

 $D^{b}(X)$ is equipped with perverse t-structure $(D^{t \leq 0}(X), D^{t \geq 0}(X))$

$D^b_{mix}(X_0)$ is equipped with

- full subcategories $(D_{mix}^{w \le 0}(X_0), D_{mix}^{w \ge 0}(X_0))$ by Frobenius weights
- perverse t-structure $(D_{mix}^{t\leq 0}(X_0), D_{mix}^{t\geq 0}(X_0))$

 $D^{b}(X)$ is equipped with perverse t-structure $(D^{t \leq 0}(X), D^{t \geq 0}(X))$

Decomposition Theorem (BBDG, Sun)

 $\mathcal{F} \in D^{w=k}_{mix}(X_0)$, then $\mathcal{F} \otimes \overline{\mathbb{F}}_q \in D^b(X)$ is semisimple (shifts allowed).

$D^b_{mix}(X_0)$ is equipped with

- full subcategories $(D_{mix}^{w \le 0}(X_0), D_{mix}^{w \ge 0}(X_0))$ by Frobenius weights
- perverse t-structure $(D_{mix}^{t\leq 0}(X_0), D_{mix}^{t\geq 0}(X_0))$

 $D^{b}(X)$ is equipped with perverse t-structure $(D^{t \leq 0}(X), D^{t \geq 0}(X))$

Decomposition Theorem (BBDG, Sun)

 $\mathcal{F} \in D^{w=k}_{mix}(X_0)$, then $\mathcal{F} \otimes \overline{\mathbb{F}}_q \in D^b(X)$ is semisimple (shifts allowed).

Note that \mathcal{F} may not be semisimple in $D^b_{mix}(X_0)$, already when $X_0 = pt_0$: $(V, \varphi) = (\mathbb{C}^2, \text{ Jordan block})$ is pure of weight 0, but not semisimple.

$D^b_{mix}(X_0)$ is equipped with

- full subcategories $(D_{mix}^{w \le 0}(X_0), D_{mix}^{w \ge 0}(X_0))$ by Frobenius weights
- perverse t-structure $(D_{mix}^{t \le 0}(X_0), D_{mix}^{t \ge 0}(X_0))$

 $D^{b}(X)$ is equipped with perverse t-structure $(D^{t \leq 0}(X), D^{t \geq 0}(X))$

Decomposition Theorem (BBDG, Sun)

 $\mathcal{F}\in D^{w=k}_{mix}(X_0)$, then $\mathcal{F}\otimes\overline{\mathbb{F}}_q\in D^b(X)$ is semisimple (shifts allowed).

Note that \mathcal{F} may not be semisimple in $D^b_{mix}(X_0)$, already when $X_0 = pt_0$: $(V, \varphi) = (\mathbb{C}^2, \text{ Jordan block})$ is pure of weight 0, but not semisimple.

Theorem (Ho–L.)

 $D_{gr}^{b}(X)$ has a weight structure and a perverse *t*-structure, compatible with the ones from $D_{mix}^{b}(X_0)$ and $D^{b}(X)$. Moreover, the weight structure and t-structure are transverse (\Rightarrow any pure object $D_{gr}^{b}(X)$ is semisimple).

t-structure $(D^{t\leq 0}, D^{t\geq 0})$	Weight structure $(D^{w \leq 0}, D^{w \geq 0})$
Axioms:	Axioms:
(i) $D^{t\leq 0}[1]\subseteq D^{t\leq 0}$	(i) $D^{w\leq 0}[-1]\subseteq D^{w\leq 0}$
$D^{t\geq 0}[-1]\subseteq D^{t\geq 0}$	$D^{w\geq 0}[1]\subseteq D^{w\geq 0}$
(ii) $\operatorname{Hom}(c, d) = 0$	(ii) Same
for $c\in D^{t\leq 0}$, $d\in D^{t\geq 1}$	
(iii) For any $c \in D$, \exists triangle	(iii) Same
$c_{\leq 0} o c o c_{\geq 1}$	
Examples:	Examples:
${\mathcal A}$ abelian category:	${\cal B}$ additive category:
$D^b(\mathcal{A})^{t\leq 0}=\{$	$\mathcal{K}^b(\mathcal{B})^{w\leq 0}=\{$
complexes whose cohomology in	complexes in non-negative degrees}
non-positive degrees}	

t-structure vs. weight structure con'd

t-structure $(D^{t\leq 0}, D^{t\geq 0})$	Weight structure $(D^{w \leq 0}, D^{w \geq 0})$
Ext ^{<0} $(c, d) = 0$, for $c, d \in D^{t=0}$	$Ext^{>0}(c,d) = 0$, for $c, d \in D^{w=0}$
$D^{t=0}$ is classical abelian category	$D^{w=0}$ is additive ∞ -category
$(D_{mix}^{t\leq 0}(-), D_{mix}^{t\geq 0}(-))$	$(D_{mix}^{w \le 0}(-), D_{mix}^{w \ge 0}(-))$
is a <i>t</i> -structure.	is NOT a weight structure
$(D_{gr}^{t\leq 0}(-), D_{gr}^{t\geq 0}(-))$	$(D_{gr}^{w \leq 0}(-), D_{gr}^{w \geq 0}(-))$
is a <i>t</i> -structure.	is a weight structure!
Beilinson realization functor	Bondarko weight complex functor
real : $D^b(D^{t=0}) o D$	wt : $D ightarrow K^b(hD^{w=0})$
$D^{t\leq 0}(or \ D^{t\geq 0}) \hookrightarrow D$ has adjoint	No adjoint
$ au_{t\leq 0}, au_{t\geq 0}$ is canonical	$ au_{w\leq 0}, au_{w\geq 0}$ is not canonical
t,w are transverse := $ au_{w \leq i}, au_{w \geq i}$ are functorial and t-exact on $D^{t=0}$	
transversality \Rightarrow any $c \in D^{w=0}$ is semisimple for t-structure	
For any $F: (C, w) \rightarrow (D, t)$, define the composition	
$\widehat{F}: C \xrightarrow{wt} K^b(C^{w=0}) \xrightarrow{K^b(H^* \circ F)} \oplus_{\mathbb{Z}} K^b(D^{t=0}) \longrightarrow \oplus_{\mathbb{Z}} D^b(D^{t=0}) \xrightarrow{real} \oplus_{\mathbb{Z}} D^b(D^{t=0}) rea$	
	<□> <圖> <圖> < => < => < => < => のQ@

Proposition (Ho-L.)

Suppose $RHom_{D_{gr}^b(X)}(IC_1, IC_2)$ is pure for all IC-sheaves IC_1, IC_2 , then there is an canonical equivalence:

$$D^b_{gr}(X) \simeq K^b(SS(X))$$

where $SS(X) \subset D^b(X)$ is the additive category of semisimple complexes.

Proposition (Ho-L.)

Suppose $RHom_{D_{gr}^b(X)}(IC_1, IC_2)$ is pure for all IC-sheaves IC_1, IC_2 , then there is an canonical equivalence:

$$D^b_{\mathsf{gr}}(X) \simeq K^b(SS(X))$$

where $SS(X) \subset D^b(X)$ is the additive category of semisimple complexes.

Space *X* satisfies the purity condition:

- $B \setminus G/B$ (Soergel, categorification of H_W) $\Rightarrow D^b_{gr}(B \setminus G/B) = \mathcal{H}_G$
- $\frac{N}{G}$ (Rider, formality in Springer theory)
- Quiver stack (Lusztig, categorification of $U_q(n)$)

Proposition (Ho-L.)

Suppose $RHom_{D_{gr}^b(X)}(IC_1, IC_2)$ is pure for all IC-sheaves IC_1, IC_2 , then there is an canonical equivalence:

$$D^b_{\mathsf{gr}}(X) \simeq K^b(SS(X))$$

where $SS(X) \subset D^b(X)$ is the additive category of semisimple complexes.

Space X satisfies the purity condition:

- $B \setminus G/B$ (Soergel, categorification of H_W) $\Rightarrow D^b_{gr}(B \setminus G/B) = \mathcal{H}_G$
- $\frac{N}{G}$ (Rider, formality in Springer theory)
- Quiver stack (Lusztig, categorification of $U_q(\mathfrak{n})$)

Space X do NOT satisfy the purity condition: $\frac{G}{B}, \frac{G}{G}, \dots$

- Let D^b_∞(X) ⊂ D^b(X) be the category generated by sheaves comming from some rational form X₀.
- $D^b_{mix}(X_0) \to D^b_{gr}(X) \to D^b_{\infty}(X) \subset D^b(X)$, functors in general not essentially surjective.

- Let D^b_∞(X) ⊂ D^b(X) be the category generated by sheaves comming from some rational form X₀.
- $D^b_{mix}(X_0) \to D^b_{gr}(X) \to D^b_{\infty}(X) \subset D^b(X)$, functors in general not essentially surjective.
- $Irr(Perv_{gr}(X)) \rightarrow Irr(Perv_{\infty}(X))$ is a \mathbb{Z} -torsor (with a sections).

- Let D^b_∞(X) ⊂ D^b(X) be the category generated by sheaves comming from some rational form X₀.
- $D^b_{mix}(X_0) \to D^b_{gr}(X) \to D^b_{\infty}(X) \subset D^b(X)$, functors in general not essentially surjective.
- $Irr(Perv_{gr}(X)) \rightarrow Irr(Perv_{\infty}(X))$ is a \mathbb{Z} -torsor (with a sections).
- To make things compatible with Frobenius trace, one can use instead

$$D^b_\Omega(X) = D^b_{mix}(X_0) \otimes_{D^b_{mix}(pt_0)} \mathsf{Vect}^\Omega$$

- Let D^b_∞(X) ⊂ D^b(X) be the category generated by sheaves comming from some rational form X₀.
- $D^b_{mix}(X_0) \to D^b_{gr}(X) \to D^b_{\infty}(X) \subset D^b(X)$, functors in general not essentially surjective.
- $Irr(Perv_{gr}(X)) \rightarrow Irr(Perv_{\infty}(X))$ is a \mathbb{Z} -torsor (with a sections).
- To make things compatible with Frobenius trace, one can use instead

$$D^b_\Omega(X) = D^b_{mix}(X_0) \otimes_{D^b_{mix}(pt_0)} \mathsf{Vect}^\Omega$$

• Expect the Hodge counterpart

$$D^b_{gr,Hod}(X) = D^b(MHM)(X) \otimes_{D^b(MHS)} \text{Vect}^{gr}$$

Applications of graded sheaves

Ocneanu, Jones: HOMFLY-PT polynomial of a braid β can be realized as a trace on Hecke algebra.

$$\beta \in Br_n \to H_n \to hh(H_n) \to \mathbb{C}[q, z]$$

Proposition (Webster–Williamson, Shende–Treumann–Zaslow, Ho–L.)

Let $G = GL_n$, the composition is the Khovanov–Rozansky homology $HHH(\beta)$ of the braid β :

$$\beta \in Br_n \to D^b_{gr}(B \setminus G/B) \xrightarrow{q_!p^*} D^b_{gr}(\frac{G}{G}) \xrightarrow{\widehat{R\Gamma}} \operatorname{Vect}_{\operatorname{gr,gr}} \xrightarrow{H^*} \operatorname{Vect}_{\operatorname{gr,gr,gr}}^{t=0}$$

For the horocycle correspondence:

$$B \setminus G / B \stackrel{p}{\longleftrightarrow} \frac{G}{B} \stackrel{q}{\longrightarrow} \frac{G}{G}$$

Applications of graded sheaves

Ocneanu, Jones: HOMFLY-PT polynomial of a braid β can be realized as a trace on Hecke algebra.

$$\beta \in Br_n \to H_n \to hh(H_n) \to \mathbb{C}[q, z]$$

Proposition (Webster–Williamson, Shende–Treumann–Zaslow, Ho–L.)

Let $G = GL_n$, the composition is the Khovanov–Rozansky homology $HHH(\beta)$ of the braid β :

$$\beta \in Br_n \to D^b_{gr}(B \setminus G/B) \xrightarrow{q_!p^*} D^b_{gr}(\frac{G}{G}) \xrightarrow{\widehat{R\Gamma}} \operatorname{Vect}_{\operatorname{gr,gr}} \xrightarrow{H^*} \operatorname{Vect}_{\operatorname{gr,gr,gr}}^{t=0}$$

For the horocycle correspondence:

$$B \setminus G / B \stackrel{p}{\longleftrightarrow} \frac{G}{B} \stackrel{q}{\longrightarrow} \frac{G}{G}$$

Applications of graded sheaves

Ocneanu, Jones: HOMFLY-PT polynomial of a braid β can be realized as a trace on Hecke algebra.

$$\beta \in Br_n \to H_n \to hh(H_n) \to \mathbb{C}[q, z]$$

Proposition (Webster–Williamson, Shende–Treumann–Zaslow, Ho–L.)

Let $G = GL_n$, the composition is the Khovanov–Rozansky homology $HHH(\beta)$ of the braid β :

$$\beta \in Br_n \to D^b_{gr}(B \setminus G/B) \xrightarrow{q_!p^*} D^b_{gr}(\frac{G}{G}) \xrightarrow{\widehat{R\Gamma}} \mathsf{Vect}_{\mathsf{gr},\mathsf{gr}} \xrightarrow{H^*} \mathsf{Vect}_{\mathsf{gr},\mathsf{gr},\mathsf{gr}}^{t=0}$$

For the horocycle correspondence:

$$B \setminus G / B \stackrel{p}{\longleftrightarrow} \frac{G}{B} \stackrel{q}{\longrightarrow} \frac{G}{G}$$

GNR conjecture: what are the object corepresenting summands of $\widehat{R\Gamma}$? Restrict to (unipotent) character sheaves $Ch_{G,gr} := \langle Im(q_!p^*) \rangle \subseteq D^b_{gr}(\frac{G}{G})_{q_:q_:q_:gr}$

Penghui Li joint w/ Quoc P. Ho (YMSC, Ts Graded s

Gorsky-Negut-Rasmussen Conjecture

Theorem (Ho-L.)

① There is an equivalence of ∞ -categories:

$$\Phi: \mathit{Ch}_{\mathit{GL}_n, \mathsf{gr}} \simeq \mathsf{Coh}_{\mathbb{C}^{\times} \times \mathbb{C}^{\times}}^{\mathit{per}} (\mathsf{Hilb}_n(\mathbb{C}^2))_{y=0}$$

Gorsky-Negut-Rasmussen Conjecture

Theorem (Ho–L.)

 $\textcircled{0} There is an equivalence of ∞-categories:$

$$\Phi: Ch_{GL_n, gr} \simeq \operatorname{Coh}_{\mathbb{C}^{\times} \times \mathbb{C}^{\times}}^{per} (\operatorname{Hilb}_n(\mathbb{C}^2))_{y=0}$$

(GNR conjecture) Let $\mathcal{F}_{\beta} = \Phi q_! p^* R_{\beta}$, then

$$HHH(\beta) = RHom_{\mathsf{Hilb}_n}^{\mathbb{C}^{\times} \times \mathbb{C}^{\times}} (\wedge^{\bullet} \mathcal{T}^{\vee}, \mathcal{F}_{\beta})^{per}$$

where \mathcal{T} is the tautological bundle.

Gorsky-Negut-Rasmussen Conjecture

Theorem (Ho–L.)

① There is an equivalence of ∞ -categories:

$$\Phi: \mathit{Ch}_{\mathit{GL}_n, \mathsf{gr}} \simeq \mathsf{Coh}_{\mathbb{C}^{\times} \times \mathbb{C}^{\times}}^{\mathit{per}} (\mathsf{Hilb}_n(\mathbb{C}^2))_{y=0}$$

 $(\mathsf{GNR conjecture}) \ \mathsf{Let} \ \mathcal{F}_\beta = \Phi q_! p^* R_\beta, \ \mathsf{then}$

$$HHH(\beta) = RHom_{\mathsf{Hilb}_n}^{\mathbb{C}^{\times} \times \mathbb{C}^{\times}} (\wedge^{\bullet} \mathcal{T}^{\vee}, \mathcal{F}_{\beta})^{per}$$

where \mathcal{T} is the tautological bundle.

Remark: Similar argument shows that

$$H^*(\widetilde{\mathcal{M}(eta)}) = \mathsf{RHom}_{\mathsf{Hilb}_n}^{\mathbb{C}^{ imes} imes \mathbb{C}^{ imes}} (\mathcal{P}, \mathcal{F}_eta)^{\mathsf{per}},$$

for $\mathcal{M}(\beta)$ = braid variety, and \mathcal{P} = Procesi bundle.

Penghui Li joint w/ Quoc P. Ho (YMSC, Ts

Relative Serre duality on Hecke categories

Let $L \subset G$ Levi subgroup, $i : \mathcal{H}_L \hookrightarrow \mathcal{H}_G$, and i^L, i^R be left and right adjoints. Let $FT_G = \Delta^2_{w_0}$, for w_0 maximal elements. Put $FT_{G,L} = FT_L^{-1} \star FT_G$.

Relative Serre duality on Hecke categories

Let $L \subset G$ Levi subgroup, $i : \mathcal{H}_L \hookrightarrow \mathcal{H}_G$, and i^L, i^R be left and right adjoints. Let $FT_G = \Delta^2_{w_0}$, for w_0 maximal elements. Put $FT_{G,L} = FT_L^{-1} \star FT_G$.

Theorem (Ho-L.), Conjectured by Gorsky–Hogancamp–Mellit–Nakagane (proved for $L = GL_{r,1,...,1} \subset G = GL_n$)

There is an equivalence of functor $i^R \simeq i^L(FT_{G,L} \star -)$.

Let $L \subset G$ Levi subgroup, $i : \mathcal{H}_L \hookrightarrow \mathcal{H}_G$, and i^L, i^R be left and right adjoints. Let $FT_G = \Delta^2_{w_0}$, for w_0 maximal elements. Put $FT_{G,L} = FT_L^{-1} \star FT_G$.

Theorem (Ho-L.), Conjectured by Gorsky–Hogancamp–Mellit–Nakagane (proved for $L = GL_{r,1,...,1} \subset G = GL_n$)

There is an equivalence of functor $i^R \simeq i^L(FT_{G,L} \star -)$.

Remark: This is in analogue with the relative Serre duality in algebraic geometry: for $p: X \to S$ a smooth proper map, then we have $(p^*)^R = (p^*)^L (\omega_{X/S}^{-1} \otimes -)$. Our proof is inspired by Kapranov's result on (absolute) Serre duality in category \mathcal{O} .

く 白 ト く ヨ ト く ヨ ト

Recall we have the equivalence

$$\widehat{Ch}_{GL_n,gr} \xrightarrow{\Phi} \mathsf{Coh}_{\mathbb{C}^{\times} \times \mathbb{C}^{\times}}^{per}(\mathsf{Hilb}_n(\mathbb{C}^2))$$

Recall we have the equivalence

$$\widehat{Ch}_{GL_n,gr} \xrightarrow{\Phi} \mathsf{Coh}_{\mathbb{C}^{\times} \times \mathbb{C}^{\times}}^{per}(\mathsf{Hilb}_n(\mathbb{C}^2))$$

 $\widehat{Ch}_{GL_{n,gr}} \text{ has a monoidal structure by convolution } \star. \\ \operatorname{Coh}_{\mathbb{C}^{\times} \times \mathbb{C}^{\times}}^{per} (\operatorname{Hilb}_{n}(\mathbb{C}^{2})) \text{ has a monoidal structure by tensor } \otimes.$

Recall we have the equivalence

$$\widehat{Ch}_{GL_n,gr} \xrightarrow{\Phi} \mathsf{Coh}_{\mathbb{C}^{\times} \times \mathbb{C}^{\times}}^{per}(\mathsf{Hilb}_n(\mathbb{C}^2))$$

 $\widehat{Ch}_{GL_{n,gr}}$ has a monoidal structure by convolution \star . Coh^{per}_{$\mathbb{C}^{\times} \times \mathbb{C}^{\times}$}(Hilb_n(\mathbb{C}^{2})) has a monoidal structure by tensor \otimes .

Expectation (Monoidal conjecture)

The equivalence Φ takes \star to \otimes . (iso as E_1 -monoidal categories)

Recall we have the equivalence

$$\widehat{Ch}_{GL_n,gr} \xrightarrow{\Phi} \mathsf{Coh}_{\mathbb{C}^{\times} \times \mathbb{C}^{\times}}^{per}(\mathsf{Hilb}_n(\mathbb{C}^2))$$

 $\widehat{Ch}_{GL_{n,gr}}$ has a monoidal structure by convolution \star . Coh^{per}_{$\mathbb{C}^{\times} \times \mathbb{C}^{\times}$}(Hilb_n(\mathbb{C}^{2})) has a monoidal structure by tensor \otimes .

Expectation (Monoidal conjecture)

The equivalence Φ takes \star to \otimes . (iso as E_1 -monoidal categories)

Some evidences:

Φ takes (ind-)unit to (ind-)unit.

Recall we have the equivalence

$$\widehat{Ch}_{GL_n,gr} \xrightarrow{\Phi} \mathsf{Coh}_{\mathbb{C}^{\times} \times \mathbb{C}^{\times}}^{per}(\mathsf{Hilb}_n(\mathbb{C}^2))$$

 $\widehat{Ch}_{GL_{n,gr}}$ has a monoidal structure by convolution \star . Coh^{per}_{$\mathbb{C}^{\times} \times \mathbb{C}^{\times}$}(Hilb_n(\mathbb{C}^{2})) has a monoidal structure by tensor \otimes .

Expectation (Monoidal conjecture)

The equivalence Φ takes \star to \otimes . (iso as E_1 -monoidal categories)

Some evidences:

- Φ takes (ind-)unit to (ind-)unit.
- GNR conjecture part II: $\mathcal{F}_{\beta \star FT} \simeq \mathcal{F}_{\beta} \otimes \mathcal{O}(1)$. This would follow from the monoidal conjecture, rigidity of $\widehat{Ch}_{GL_n,gr}$ and $p_*q^! \Phi^{-1}(\mathcal{O}(1)) \simeq FT \in \mathcal{H}_G$ [Bezrukavnikov-Tolmochov].
- Ohomology of character stack

• A finite group Γ defines a 2d TFT,

- value on $S^1 = \text{class functions } Fun(\frac{\Gamma}{\Gamma})$ (a Frobenius algebra)
- value on surface $\Sigma = |Loc_{\Gamma}(\Sigma)|$.

- A finite group Γ defines a 2d TFT,
 - value on $S^1 = \text{class functions } Fun(\frac{\Gamma}{\Gamma})$ (a Frobenius algebra)
 - value on surface $\Sigma = |Loc_{\Gamma}(\Sigma)|$.
- The Hecke category \mathcal{H}_G defines a 2d TFT \mathcal{Z}_{Ch} ,
 - value on S^1 = character sheaves $\widehat{Ch}_{G,gr}$ (a "Frobenius category")
 - value on surface $\Sigma \rightsquigarrow H^*_{gr}(Loc_G(\Sigma))$ [Ben-Zvi–Nadler–Gunningham].

- A finite group Γ defines a 2d TFT,
 - value on $S^1 = \text{class functions } Fun(\frac{\Gamma}{\Gamma})$ (a Frobenius algebra)
 - value on surface $\Sigma = |Loc_{\Gamma}(\Sigma)|$.
- The Hecke category \mathcal{H}_G defines a 2d TFT \mathcal{Z}_{Ch} ,
 - value on $S^1=$ character sheaves $\widehat{Ch}_{G,\mathrm{gr}}$ (a "Frobenius category")
 - value on surface $\Sigma \rightsquigarrow H^*_{gr}(Loc_G(\Sigma))$ [Ben-Zvi–Nadler–Gunningham].
- The value on a surface $\mathcal{Z}_{Ch}(\Sigma)$ can be computed from unit, convolution, and their duals.

- A finite group Γ defines a 2d TFT,
 - value on $S^1 = \text{class functions } Fun(\frac{\Gamma}{\Gamma})$ (a Frobenius algebra)
 - value on surface $\Sigma = |Loc_{\Gamma}(\Sigma)|$.
- The Hecke category \mathcal{H}_G defines a 2d TFT \mathcal{Z}_{Ch} ,
 - value on $S^1 =$ character sheaves $\widehat{Ch}_{G,gr}$ (a "Frobenius category")
 - value on surface $\Sigma \rightsquigarrow H^*_{gr}(Loc_G(\Sigma))$ [Ben-Zvi–Nadler–Gunningham].
- The value on a surface $\mathcal{Z}_{Ch}(\Sigma)$ can be computed from unit, convolution, and their duals.
- Monoidal conjecture implies that:

$$\mathcal{Z}_{Ch}(\Sigma_g) \simeq \mathcal{Z}_{\mathsf{Hilb}}(\Sigma_g) \simeq H^*(X, \mathsf{Sym}(T^*_X[1])^{\otimes g}), \qquad X = \mathit{Hilb}$$

- A finite group Γ defines a 2d TFT,
 - value on $S^1 = \text{class functions } Fun(\frac{\Gamma}{\Gamma})$ (a Frobenius algebra)
 - value on surface $\Sigma = |Loc_{\Gamma}(\Sigma)|$.
- The Hecke category \mathcal{H}_G defines a 2d TFT \mathcal{Z}_{Ch} ,
 - value on $S^1 =$ character sheaves $\widehat{Ch}_{G,gr}$ (a "Frobenius category")
 - value on surface $\Sigma \rightsquigarrow H^*_{gr}(Loc_G(\Sigma))$ [Ben-Zvi–Nadler–Gunningham].
- The value on a surface $\mathcal{Z}_{Ch}(\Sigma)$ can be computed from unit, convolution, and their duals.
- Monoidal conjecture implies that:

$$\mathcal{Z}_{Ch}(\Sigma_g) \simeq \mathcal{Z}_{\mathsf{Hilb}}(\Sigma_g) \simeq H^*(X,\mathsf{Sym}(\mathcal{T}^*_X[1])^{\otimes g}), \qquad X = \mathit{Hilb}$$

where the second equivalence is because (for X smooth): Vect $\xrightarrow{1=\mathcal{O}} \operatorname{Coh}(X) \xrightarrow{\Delta_* = \otimes^{\vee}} \operatorname{Coh}(X \times X) \xrightarrow{\Delta^* = \otimes} \operatorname{Coh}(X) \xrightarrow{\Delta_*} \dots$ $\xrightarrow{\Delta^*} \operatorname{Coh}(X) \xrightarrow{1^{\vee} = H^*} \operatorname{Vect}$

A commutative diagram?

A commutative diagram?

