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Hecke algebra

Symmetric group Sn is generated by σ1, ...σn−1, subject to the
relations:

1 σiσi+1σi = σi+1σiσi+1

2 σiσj = σjσi , ∀|i − j | > 1
3 σ2

i = 1

Z[Sn] has a 1-parameter deformation:
Hn is a Z[q, q−1]-algebra generated by T1, ...,Tn−1 subject to the
relation:

1 TiTi+1Ti = Ti+1TiTi+1

2 TiTj = TjTi , ∀|i − j | > 1
3 T 2

i = (q − 1)Ti + q

Hecke algebra HW is defined similarly for general Weyl group W .
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Categorification of Hecke algebras

G reductive group, B ⊂ G a Borel subgroup, for q = pr

then

HW ⊗Z[√q±] C ≃ (C[B(Fq)\G (Fq)/B(Fq)], ∗conv )

Tsi ←→ 1B\BsiB/B

Categorification: Replace functions by (constructible) sheaves:
Shv(B\G/B).

But what kind of sheaves?

For G over algebraically closed k. We have K(Db
c (B\G/B)) = C[W ].

Too small: no q appears.
For G0 over pt0 = Spec (Fq), then K(Db

c (B0\G0/B0)) is too big.
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Example for G = {1}

For G = {1}, we have H{1} = Z[√q,√q−1] = Z[Z] = group ring of Z.

Canonical categorification of H{1} is given by

VectZ:= the derived category of Z-graded vector spaces.

K(VectZ) ≃−→ Z[
√
q,
√
q−1]

⊕iVi 7→
∑
i

χ(Vi )q
i/2

The two candidates in previous page: (fix Qℓ ≃ C)
Db(pt) = Vect, and Db(pt0) = {(V , φ) : V ∈ Vect, φ : V

≃−→ V , ...}
1 K(Db(pt)) = Z, too small.

2 K(Db(pt0)) = Z[C×], too big (actually Z[{ℓ-adic units in C×}]).

A solution: take Tate objects.
Db
Tate(pt0) :=< (C, φ = qk/2), k ∈ Z >⊆ Db(pt0).
K(Db

Tate(pt0)) = Z[√qZ] ⊆ Z[C×]
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Categorification of Hecke algebra using Tate sheaves

Theorem (Soergel, Beilinson–Ginzburg–Soergel)

Let HG := Db
Tate(B0\G0/B0) ⊆ Db(B0\G0/B0) be the subcategory

“generated” by ICw ⟨k⟩,w ∈W . Then

K(HG ) ≃ HW

[ICw ⟨k⟩] 7→ qkKLw
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Functorial categorification?

However, the assignment X0 7→ Db
Tate(X0) is not functorial in general:

1 IC -sheaves are preserved in general only under proper
pushforward/smooth pullback.

2 Pushforward of Tate objects are not necessarily Tate (consider
E0 → pt0).

3 Frobenius action on H∗(X ) not known to be semisimple (standard
conjectures).

Main Goal

Define a sheaf theory S : Stk → Catst∞, with six functors formalism,
such that S(B\G/B) = HG .
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Mixed sheaves

Previous constructions has an intermediate step:

Db
Tate(X0) ⊆ Db

mix(X0) ⊆ Db(X0)

where Db
mix(X0) are those sheaves with Frobenius eigenvalues on stalks lie

in
Ω := {λ ∈ C× : |λ| ∈ √qZ}

For X0 = pt0, the above inclusion essentially comes from

√
qZ ↪→ Ω ↪→ C×
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Sub vs. Quotient

For a vector space V , we have subspace U ⊆ V or quotient space V /U.
They should be treated on equal footing, even though V /U is harder to
define. Same idea should apply to categories.

Instead of √
qZ ↪→ Ω ↪→ C×

We consider
Z↞ Ω ↪→ C×

The map
√
qZ ↪→ Ω is a section of the projection Ω↠ Z, depending on

choice of a number in C× Consider similar diagram on categories:

Db
gr (pt) := VectZ ↞ Db

mix(pt0) ↪→ Db(pt0)

The arrow ↞ sending (V , φ) 7→ ⊕iVi , where Vi ⊆ V is the subspace of
Frobenius weight i .
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Definition of graded sheaves

Definition(Ho–L.)

Let X/Fq be a finite type Artin stack, X0 be a rational form of X .

Db
gr (X ) := Db

mix(X0)⊗Db
mix (pt0)

Db
gr(pt)

(tensor product taken in small stable ∞-categories.)

Db
gr (X ) is canonically independent of the choice of X0.

Db
gr (X ) has six functor formalism induced from Db

mix(X0).

We have natural functors Db
mix(X0) // Db

gr (X ) // Db(X )

composition is simply F 7→ F ⊗ Fq.
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Enhenced decomposition theorem

Db
mix(X0) is equipped with

full subcategories (Dw≤0
mix (X0),D

w≥0
mix (X0)) by Frobenius weights

perverse t-structure (Dt≤0
mix (X0),D

t≥0
mix (X0))

Db(X ) is equipped with perverse t-structure (Dt≤0(X ),Dt≥0(X ))

Decomposition Theorem (BBDG, Sun)

F ∈ Dw=k
mix (X0), then F ⊗ Fq ∈ Db(X ) is semisimple (shifts allowed).

Note that F may not be semisimple in Db
mix(X0), already when X0 = pt0:

(V , φ) = (C2, Jordan block) is pure of weight 0, but not semisimple.

Theorem (Ho–L.)

Db
gr (X ) has a weight structure and a perverse t-structure, compatible with

the ones from Db
mix(X0) and Db(X ). Moreover, the weight structure and

t-structure are transverse (⇒ any pure object Db
gr (X ) is semisimple).
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t-structure vs. weight structure

t-structure (Dt≤0,Dt≥0) Weight structure (Dw≤0,Dw≥0)

Axioms: Axioms:
(i) Dt≤0[1] ⊆ Dt≤0 (i) Dw≤0[−1] ⊆ Dw≤0

Dt≥0[−1] ⊆ Dt≥0 Dw≥0[1] ⊆ Dw≥0

(ii) Hom(c, d) = 0 (ii) Same
for c ∈ Dt≤0, d ∈ Dt≥1

(iii) For any c ∈ D, ∃ triangle (iii) Same
c≤0 → c → c≥1

Examples: Examples:
A abelian category: B additive category:
Db(A)t≤0 = { Kb(B)w≤0 = {
complexes whose cohomology in
non-positive degrees}

complexes in non-negative degrees}

Penghui Li joint w/ Quoc P. Ho (YMSC, Tsinghua University)Graded sheaves and Applications BeiShang Summer School, 2025 13 / 23



t-structure vs. weight structure con’d

t-structure (Dt≤0,Dt≥0) Weight structure (Dw≤0,Dw≥0)

Ext<0(c , d) = 0, for c , d ∈ Dt=0 Ext>0(c , d) = 0, for c , d ∈ Dw=0

Dt=0 is classical abelian category Dw=0 is additive ∞-category

(Dt≤0
mix (−),D

t≥0
mix (−)) (Dw≤0

mix (−),Dw≥0
mix (−))

is a t-structure. is NOT a weight structure

(Dt≤0
gr (−),Dt≥0

gr (−)) (Dw≤0
gr (−),Dw≥0

gr (−))
is a t-structure. is a weight structure!

Beilinson realization functor Bondarko weight complex functor
real : Db(Dt=0)→ D wt : D → Kb(hDw=0)

Dt≤0(or Dt≥0) ↪→ D has adjoint No adjoint
τt≤0, τt≥0 is canonical τw≤0, τw≥0 is not canonical

t,w are transverse := τw≤i , τw≥i are functorial and t-exact on Dt=0

transversality ⇒ any c ∈ Dw=0 is semisimple for t-structure

For any F : (C ,w)→ (D, t), define the composition

F̂ : C
wt−→ Kb(Cw=0)

Kb(H∗◦F )−−−−−−→ ⊕ZK
b(Dt=0) −→ ⊕ZD

b(Dt=0)
real−−→ ⊕ZD
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Functorial categorification of Hecke algebra

Proposition (Ho–L.)

Suppose RHomDb
gr(X )(IC1, IC2) is pure for all IC-sheaves IC1, IC2, then

there is an canonical equivalence:

Db
gr(X ) ≃ Kb(SS(X ))

where SS(X ) ⊂ Db(X ) is the additive category of semisimple complexes.

Space X satisfies the purity condition:

B\G/B (Soergel, categorification of HW ) ⇒ Db
gr (B\G/B) = HG

N
G (Rider, formality in Springer theory)

Quiver stack (Lusztig, categorification of Uq(n))

Space X do NOT satisfy the purity condition: G
B ,

G
G , ...
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Further properties/remarks

Let Db
∞(X ) ⊂ Db(X ) be the category generated by sheaves comming

from some rational form X0.

Db
mix(X0)→ Db

gr (X )→ Db
∞(X ) ⊂ Db(X ), functors in general not

essentially surjective.

Irr(Pervgr (X ))→ Irr(Perv∞(X )) is a Z-torsor (with a sections).

To make things compatible with Frobenius trace, one can use instead

Db
Ω(X ) = Db

mix(X0)⊗Db
mix (pt0)

VectΩ

Expect the Hodge counterpart

Db
gr ,Hod(X ) = Db(MHM)(X )⊗Db(MHS) Vect

gr
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Applications of graded sheaves

Ocneanu, Jones: HOMFLY-PT polynomial of a braid β can be realized as
a trace on Hecke algebra.

β ∈ Brn → Hn → hh(Hn)→ C[q, z ]

Proposition (Webster–Williamson, Shende–Treumann–Zaslow, Ho–L.)

Let G = GLn, the composition is the Khovanov–Rozansky homology
HHH(β) of the braid β:

β ∈ Brn → Db
gr (B\G/B)

q!p
∗

−−→ Db
gr (

G

G
)

R̂Γ−−→ Vectgr,gr
H∗
−−→ Vectt=0

gr,gr,gr

For the horocycle correspondence:

B\G/B G
B

q //poo G
G

GNR conjecture: what are the object corepresenting summands of R̂Γ?
Restrict to (unipotent) character sheaves ChG ,gr := ⟨Im(q!p

∗)⟩ ⊆ Db
gr (

G
G ).

Penghui Li joint w/ Quoc P. Ho (YMSC, Tsinghua University)Graded sheaves and Applications BeiShang Summer School, 2025 17 / 23



Applications of graded sheaves

Ocneanu, Jones: HOMFLY-PT polynomial of a braid β can be realized as
a trace on Hecke algebra.

β ∈ Brn → Hn → hh(Hn)→ C[q, z ]

Proposition (Webster–Williamson, Shende–Treumann–Zaslow, Ho–L.)

Let G = GLn, the composition is the Khovanov–Rozansky homology
HHH(β) of the braid β:

β ∈ Brn → Db
gr (B\G/B)

q!p
∗

−−→ Db
gr (

G

G
)

R̂Γ−−→ Vectgr,gr
H∗
−−→ Vectt=0

gr,gr,gr

For the horocycle correspondence:

B\G/B G
B

q //poo G
G

GNR conjecture: what are the object corepresenting summands of R̂Γ?
Restrict to (unipotent) character sheaves ChG ,gr := ⟨Im(q!p

∗)⟩ ⊆ Db
gr (

G
G ).

Penghui Li joint w/ Quoc P. Ho (YMSC, Tsinghua University)Graded sheaves and Applications BeiShang Summer School, 2025 17 / 23



Applications of graded sheaves

Ocneanu, Jones: HOMFLY-PT polynomial of a braid β can be realized as
a trace on Hecke algebra.

β ∈ Brn → Hn → hh(Hn)→ C[q, z ]

Proposition (Webster–Williamson, Shende–Treumann–Zaslow, Ho–L.)

Let G = GLn, the composition is the Khovanov–Rozansky homology
HHH(β) of the braid β:

β ∈ Brn → Db
gr (B\G/B)

q!p
∗

−−→ Db
gr (

G

G
)

R̂Γ−−→ Vectgr,gr
H∗
−−→ Vectt=0

gr,gr,gr

For the horocycle correspondence:

B\G/B G
B

q //poo G
G

GNR conjecture: what are the object corepresenting summands of R̂Γ?
Restrict to (unipotent) character sheaves ChG ,gr := ⟨Im(q!p

∗)⟩ ⊆ Db
gr (

G
G ).

Penghui Li joint w/ Quoc P. Ho (YMSC, Tsinghua University)Graded sheaves and Applications BeiShang Summer School, 2025 17 / 23



Gorsky-Negut-Rasmussen Conjecture

Theorem (Ho–L.)

1 There is an equivalence of ∞-categories:

Φ : ChGLn,gr ≃ CohperC××C×(Hilbn(C2))y=0

2 (GNR conjecture) Let Fβ = Φq!p
∗Rβ, then

HHH(β) = RHomC××C×

Hilbn
(∧•T ∨,Fβ)

per

where T is the tautological bundle.

Remark: Similar argument shows that

H∗(M̃(β)) = RHomC××C×

Hilbn
(P,Fβ)

per ,

for M̃(β) = braid variety, and P = Procesi bundle.
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Relative Serre duality on Hecke categories

Let L ⊂ G Levi subgroup, i : HL ↪→ HG , and iL, iR be left and right
adjoints. Let FTG = ∆2

w0
, for w0 maximal elements. Put

FTG ,L = FT−1
L ⋆ FTG .

Theorem (Ho-L.), Conjectured by
Gorsky–Hogancamp–Mellit–Nakagane (proved for
L = GLr ,1,...,1 ⊂ G = GLn)

There is an equivalence of functor iR ≃ iL(FTG ,L ⋆−).

Remark: This is in analogue with the relative Serre duality in algebraic
geometry: for p : X → S a smooth proper map, then we have
(p∗)R = (p∗)L(ω−1

X/S ⊗−).
Our proof is inspired by Kapranov’s result on (absolute) Serre duality in
category O.
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(p∗)R = (p∗)L(ω−1

X/S ⊗−).
Our proof is inspired by Kapranov’s result on (absolute) Serre duality in
category O.
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Further expectations

Recall we have the equivalence

ĈhGLn,gr
Φ−→ CohperC××C×(Hilbn(C2))

ĈhGLn,gr has a monoidal structure by convolution ⋆.
CohperC××C×(Hilbn(C2)) has a monoidal structure by tensor ⊗.

Expectation (Monoidal conjecture)

The equivalence Φ takes ⋆ to ⊗. (iso as E1-monoidal categories)

Some evidences:

1 Φ takes (ind-)unit to (ind-)unit.

2 GNR conjecture part II: Fβ⋆FT ≃ Fβ ⊗O(1). This would follow from

the monoidal conjecture, rigidity of ĈhGLn,gr and
p∗q

!Φ−1(O(1)) ≃ FT ∈ HG [Bezrukavnikov-Tolmochov].

3 Cohomology of character stack
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p∗q

!Φ−1(O(1)) ≃ FT ∈ HG [Bezrukavnikov-Tolmochov].

3 Cohomology of character stack

Penghui Li joint w/ Quoc P. Ho (YMSC, Tsinghua University)Graded sheaves and Applications BeiShang Summer School, 2025 20 / 23



Character sheaves as 2d TFT

A finite group Γ defines a 2d TFT,

value on S1 = class functions Fun(ΓΓ ) (a Frobenius algebra)
value on surface Σ = |LocΓ(Σ)| .

The Hecke category HG defines a 2d TFT ZCh,

value on S1 = character sheaves ĈhG ,gr ( a “Frobenius category”)
value on surface Σ⇝ H∗

gr (LocG (Σ)) [Ben-Zvi–Nadler–Gunningham].

The value on a surface ZCh(Σ) can be computed from unit,
convolution, and their duals.

Monoidal conjecture implies that:

ZCh(Σg ) ≃ ZHilb(Σg ) ≃ H∗(X , Sym(T ∗
X [1])

⊗g ), X = Hilb

where the second equivalence is because (for X smooth):

Vect
1=O−−−→ Coh(X )

∆∗=⊗∨
−−−−−→ Coh(X × X )

∆∗=⊗−−−−→ Coh(X )
∆∗−−→ ...

∆∗
−−→ Coh(X )

1∨=H∗
−−−−→ Vect
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A commutative diagram?
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